Mr. Kijja Ketprechasawat

2132 Mu 1, Soi. Dansumrong 54/22 Samrong Nuea, Sukhumvit Road Amphur Meuang, Samut Prakan 10270, Thailand Mobile: (087)-787-4225

E-mail: Engineer_Kijja@hotmail.com

1. BIODATA

PERSONAL DETAILS

Date of Birth: February 17, 1986

Marital Status : Married Military Status : Exempted

(Finished Military Service Training of Territorial Defence Course)

Nationality: Thai

Religion: Buddhism Weight: 84 kg Height: 178 cm

EDUCATION:

Degree: Bachelor Degree of Engineering

Institution: Kasetsart University
Major: Civil Engineering
Minor: Structural Engineering
Dates Attended: June 2004 - March 2008

Senior Project: Behavior of Reinforced Concrete Buildings with Fixed and

Soil Spring Support under Wind Load and Seismic Zone 1

GPA: 2.77

Degree : Master Degree of Engineering

Institution: Kasetsart University
Major: Civil Engineering

Minor: Geotechnical Engineering

Dates Attended: June 2008 - April 2011

Thesis: Improvement of Bottom Ash by Fly Ash and Lime Powder

GPA: 3.76

CERTIFICATE:

- Professional Engineers License (Civil Engineer): สย. 12457

2. TRAINING PROGRAM:

2.1 Geotechnical Engineering: November 2, 2012 – January 31, 2013

Company: Black and Veatch Corporation

11401 Lamar Avenue, Overland Park, Kansas 66211 USA

Position: Geotechnical Engineer

Project Name	Owner	Location	Responsibilities
MultiValue Project 3 & 4	MidAmerican	Iowa, USA	Transmission Line Design Criteria
Proposal	Energy		- Analysis of Laterally Loaded
			Drilled Pier by FAD (Foundation
			Analysis & Design) software
Polk 2 Combined Cycle	Tampa Electric	Mulberry,	- Soil Investigation Supervision
		Florida	- Boring Logs & Design Soil Profile
			- Site Class Determination
			- Auger Cast-in-Place Pile Axial
			Capacity Design
			- Auger Cast-in-Place Lateral
			Capacity Design
			- Bearing Capacity and Settlement

2.2 Trainee Engineering : March 26, 2007 – May 25, 2007

Company: Warnes Associates Company Limited

153/3 Goldenland, Building 6th floor, soi mahardlekluang 1,

Rajdamri Road, Lumpini, Patumwan,

Bangkok 10330 Thailand

Position: Trainee Engineer

Work Descriptions : Reinforce Concrete Design and Steel Design

3. WORK EXPERIENCE:

Company: Black & Veatch (Thailand) Ltd. Position: Senior Geotechnical Engineer

Period Working: July 2, 2012 – Present

Power Business Project Lists

Project Name	Owner	Location	Responsibilities
EGAT Rayong 3 and 4	EGAT	Rayong,	- Design Soil Profile
Substation Proposal		Thailand	- Axial Pile Capacity & Lateral Pile
			Capacity of Driven Pile
			- The Allowable Bearing Capacity
			and Settlement
Sriracha Power Plant Project	Gulf SRC	Sriracha,	Design Review
	Company Limited	Chonburi,	- The Allowable Capacity of Pile
	(GSRC)	Thailand	Calculation
			- Pile Load Test Report
			- The Equipment Foundation Design
			Calculation and Drawing
			- Slope Stability Analysis of Ponds
			Calculation and Drawing
Tambak Lorok 3 (CCPP)	PT. Indonesia	Central Java,	- Design Soil Profile
Proposal & Project	Power	Indonesia	- Axial Pile Capacity & Lateral Pile
			Capacity of Driven Pile
			- PVD Analysis and Design
			- Equipment Foundation Design
			- Pipe & Cable Trench Design
Bang Pakong Combined Cycle	Electricity	Bang Pakong,	- Design Soil Profile
Replacement (2x650 MW)	Generating	Chachoengsao,	- Axial Pile Capacity of Driven Piles
Proposal & Project	Authority of	Thailand	and Bored Pile
	Thailand (EGAT)		- Lateral Pile Capacity of Driven
			Piles and Bored Pile
			- Blowdown Sump Design
			- Site Construction Monitoring for
			Coffer Dam Structure
Thermal South Energy	Thermal South Inc.	Davao City,	- Design Soil Profile for Ash Landfill
Unit 1 & 2 Project		Philippines	Structure
			- Slope Stability Analysis for Ash
			Landfill Structure
			- Boiler Fire Fighting Booster Pump
			Station Foundation Design
Calaca Unit 7 Coal Fired	D.M.Consunji Inc.	Calaca,	- Site Supervision for Soil
Power Plant (2x150 MW)		Batangas,	Investigation Work
Proposal		Philippines	- Design Soil Profile
			- Axial Pile Capacity of Driven Piles
			and Bored Pile
			- Lateral Pile Capacity of Driven
			Piles and Bored Pile

Power Business Project Lists (Continue)

Project Name	Owner	Location	Responsibilities
IRPC SPP CHP II Project	IRPC Clean Power	Rayong,	Inspection for Civil Work at Site
(2 Block of a 2 x 1 Combined	Co., Ltd.	Thailand	- Piling work
Cycle, 120 MW per Block)			- Site Preparation work
			- Underground work
			Design Review
			- The Allowable Capacity of Pile and
			Shallow Foundation
			- The Foundation Design for
W 1. C 1E. 1D DI 4	F1	TZ 1:	Structure and Equipment
Krabi Coal Fired Power Plant	Electricity	Krabi,	- Design Soil Profile
(1x870 MW) Proposal	Generating	Thailand	- Axial Pile Capacity of Driven Piles and Bored Pile
	Authority of		
	Thailand (EGAT)		- Lateral Pile Capacity of Driven Piles and Bored Pile
Lontar (1 x 315 MW)		Banten,	- Design Soil Profile
Extension Coal Fired Stream		Indonesia	- Axial Pile Capacity of Driven Pile
Power Plant Proposal		muonesia	- Lateral Pile Capacity of Driven Pile
1 ower 1 fant 1 roposar			- Bearing Capacity and Settlement
Hamitabat Project (1,500 MW	Hamitabat Elektrik	Lüleburgaz	- Design Soil Profile
Combined Cycle Power Plant)	Üretim Ve Ticaret	District of	- Potential Vertical Rise of Swelling
	A.Ş	Kirklareli	Soil
	,	Province in	- Bearing Capacity and Settlement
		Thrace, Turkey	- Equipment Foundation and Anchor
			Bolts Design
			- Electrical Manhole Design
			- Blowdown Tank and Lift Pit
			Design
Sumsel 9 Project (Block A)	DH Energy	Pendopo,	- Reviewed the Geotechnical Report
Proposal (2 x 660 MW Coal		South Sumatra,	
Fired Power Plant)		Indonesia	
Malaysia 4A Proposal	-	Johore,	- Design Soil Profile
(1,000-1,400 MW)		Malaysia	- Axial Pile Capacity of Driven Pile
			- Lateral Pile Capacity of Driven Pile
			- Bearing Capacity and Settlement
			- Transformer Foundation Design
			- Utility Rack and Pipe Sleeper Foundation
Yangon Phase 1 CFB Proposal	-	Yangon,	- Utility Rack and Pipe Sleeper
(2x180 MW)		Myanmar Myanmar	foundation
Duyen Hai 3 Proposal	-	Vietnam	-Preparation BOQ of Crain Girder
			Structure
Craig Station (Unit 2)	Tri-State Genertion	Colorado,	- The extension of existing pile head
(Retrofit Air Quality Control	& Transmission	USA	design
Project Including Selective			
Catalytic Reduction (SCR) –			
3 x 440 MW)			

Power Business Project Lists (Continue)

Project Name	Owner	Location	Responsibilities
Therma Visayas Proposal (300 MW Coal – Fired Power Plant Project)	Therma Visayas Inc.	Toledo City, Cebu, Philippines	 Design Soil and Rock Profile Axial Pile Capacity of Bored Piles Lateral Pile Capacity of Bored Piles Bearing Capacity and Settlement
Port Westward Unit 2 (200 MW Natural Gas Fueled Project)	Portland General Electric Company	Clatskanie, Oregon, USA	- Top Slab of Cooling Tower and Anchor Bolt Design
Mae Moh Unit 4 – 7 Proposal (600 MW Coal – Fired Power Plant Project)	Electricity Generating Authority of Thailand (EGAT)	Lampang, Thailand	 Design Soil and Rock Profile Axial Pile Capacity of Bored Piles Lateral Pile Capacity of Bored Piles Bearing Capacity and Settlement Tanks Foundation Slope Stability Analysis Effective Depth of Swelling Soil
Doud Substation	ITC Midwest, LLC	Iowa, USA	Design Soil Profile and Drilled PierParametersBearing Capacity and Settlement
Vital Substation	ITC Holding Company Engineering	Michigan, USA	 Design Soil Profile and Drilled Pier Parameters Bearing Capacity and Settlement
Marubeni Glow Blitz Project (Proposal)	Glow Hemaraj Energy Co., Ltd.	Rayong, Thailand	- Slope Stability - Reinforcement Soil Slope (RSS) by Geo-grid
Polk 2 Combined Cycle	Tampa Electric	Mulberry, Florida, USA	(See item 2.1)
MultiValue Project 3 & 4 Proposal	MidAmerican Energy	Iowa, USA	(See item 2.1)
Wang Noi Combine Cycle Power Plant Block 4	Electricity Generating Authority of Thailand (EGAT)	Ayuttaya, Thailand	 - Lateral Pile Capacity of Bored Piles - Anchor Bolts Design for Equipment - Foundation Design for Ammonia Dosing Container - Anchor Bolt Design for Equipment
Chana Combine Cycle Power Plant Block 2	Electricity Generating Authority of Thailand (EGAT)	Songkhla, Thailand	 - Axial Pile Capacity of Bored Piles - Lateral Pile Capacity of Bored Piles - Anchor Bolts Design for Equipment - Axial Pile Capacity and Total Settlement for Walkway

Renewable Business Project Lists

Project Name	Owner	Location	Responsibilities
JPMC Solar Rooftop Project	JPMC	All Chase	- To evaluate the existing roof
		Bank in USA	structure (main building and drive
			thru canopy)
			- To determine the PV loading on
			rooftop
220 MW Minbu Solar Power	Green Earth Power	Minbu,	- Site Supervision for Grading Work
Plant Project	(Thailand) Co.,	Myanmar	on Site
	Ltd.		- Design Review Scope (Lead Civil)
25 MW Biliran Solar Farm	NOVA ASIA Co.,	Biliran,	Feasibility Study & Development
Project	Ltd.	Philippines	<u>Project</u>
			- Conceptual Design for grading
			work, drainage and flooding work
			- Design Review Scope (Lead Civil)
Laos Banpu Solar Plant Project	Banpu Power	Attapeu, Laos	- Site Supervision
			- Feasibility Report
			- Risk Assessment Report
			- Conceptual Design
			- Soil Investigation Specification
			- Topographic Survey Specification
Solar SPP Hybrid Project	Banpu Power	Lamphon,	- Site Supervision
		Thailand	- Feasibility Report
			- Risk Assessment Report
			- Conceptual Design
Jhimpir Power PVT Wind	-	Thatta, Sindha,	- Anchor Bolt and Foundation
Power Plant (50 MW)		Pakistan	Design of Wind Turbine

Company: Toyo-Thai Corporation Public Company Limited (TTCL)

Position: Civil Engineer

Period Working: June 6, 2011 – June 29, 2012

Petrochemical Project Lists

Project Name	Owner	Location	Responsibilities
Lynas Project	-	Malaysia	- Foundation Design Basis
Rung Tawan Project	JSR BST elastomer	Rayong,	- Retaining Structure work
	Co., Ltd.	Thailand	- Underground work
			- Site Preparation work
			- Fence & Gate work
			- Road Paving & Drainage work
			- Site Preparation Specification
			- Pile Driven Criteria
			- Dynamic Pile Load Test Procedure
			- Foundation Design Basis

4. SPECIAL SKILLS:

- Good in reading and listening English
- Proficiency in Microsoft Office: Word, Excel and PowerPoint.
- Experienced in use of Staad Pro 8Vi, Plaxis, KU-Slope, Prokon, spMat, spColumn, MathCad, LPile, FAD (Foundation Analysis & Design), gINT, SAFE2014 and SAP2000.

5. EXTRA-CURRICULAR ACTIVITIES & SEMINAR

Seminar: การประชุมวิชาการวิศวกรรมโยชา ครั้งที่ 16 (NCCE 16th)

Date: May 18th-20th, 2011

Presented Topic: การปรับปรุงคุณภาพเถ้ากันเตา โดยใช้เถ้าลอยและสารปูนขาว

(Improvement of Bottom Ash by Fly Ash and Lime Powder)

Seminar: สัมนาทางวิชาการและการแสดงนิทรรศการ เรื่อง วิศวกรรมปฐพีและฐานราก'55

(Geotechnical Engineering 2012)

Date: September 26th-27th, 2012

<u>**6. OTHERS :**</u>

I am a friendly, responsible, and analytical person. I am able to get along with people in all situations. I can work independently and well as part of a team. Be able to work under pressure. I can be both a good follower and good leader also.