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ABSTRACT 

 
Tapered steel beams are adopted to optimise structural components in terms of weight, 
material usage and load capacity at each cross-section taking into account the respective 
distribution of stresses. The design guidance for non-uniform member such as tapered 
beams regarding the stability of the section is not provided in the Eurocode 3. 
 
In this dissertation, the case of web-tapered beams is researched and tapered beams with 
taper ratio of γh = 2 were analysed. A linear analysis was performed to obtain the 
critical moment for lateral-torsional buckling. In results, a new reduction curve was 
plotted and compared with the reduction curve given in the Eurocode 3. Thus, a new 
equation for reduction factor is proposed.  
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Figure 1-0: Uniform beam with non-uniform loading 

Chapter 1 
 
1.0: INTRODUCTION 
 

1.1: Importance of the project 

Structural members such as beams are essential and frequently used in. Eurocode 3 [1] 
provides structural design rules that may be applied to build steel structures and structural 
components, as well as other products of steel. For the common forms of construction, rules 
are provided and it is recommended that specialist advice is needed when considering an 
unusual structure. Moreover, EC3 serves as reference documents, which is recognized by the 
EU member states as a framework to develop harmonized technical specifications for 
construction products, as a basis for specifying contracts and as a means to prove compliance 
with the essential requirements of Council Directive 89/106/EEC. 

Among its other applications, EC3 can be employed to verify the stability of various uniform 
structural members and frames. The stability of the uniform members and frames are in EC3 
where the stability of uniform columns is check by the application of Clauses 6.3.1, and Clause 
6.3.2 for uniform beams and Clause 6.3.3 for uniform beam-columns. However, the design 
guidance for non-uniform member such as tapered section regarding the stability of the section 
is not provided in the EC3. Because of this, the evaluation and verification of the buckling 
resistance for non-uniform members should be performed according to Clause 6.3.4 (General 
method for lateral and lateral torsional buckling of structural components) and GMNIA or 
numerical analysis, which accounts for geometrical nonlinearities. Regardless of the methods 
given, there are limitations in the process of verifying the strength capacity of a non-uniform 
member. These limitations are listed below, 

i) Determining the cross section class 

 

 

  
 

 



 
Chapter 1: Introduction 
	
  

	
   2 

 

EC3 defines the 4 classes of cross section. The highest class (cross sectional resistances) is 
chosen for a tapered member. The shape and magnitude of a beam’s imperfections of the beam 
causes difficulties for the verification of a non-uniform member. Figure 1-0 illustrates a beam 
with different ratios of My,Ed to NEd  over the member length, thus, the cross section 
classification changes (Class 1,2 and 3) due to different loading. In addition, Figure 1-0 shows 
that My,Ed for class 3 cross-section are not critical compared to My,Ed in the rest of the beam. In 
the process of designing the beam, stresses must be evaluated along the beam to develop a 
design cross-section class. The highest cross-section class given will be used, thus, this design 
can result in an inefficient utilization of materials. 

Identifying the critical cross-section (critical design location) can be a lengthy procedure. 
Despite the given equation for calculating the equivalent cross-section property of elastic 
critical forces for tapered members (length – Galambos 1998 [2] and depth – Galéa 1986 [3]), 
applying these equations in the buckling design equation is not validated for the tapered 
section.  
 
Furthermore, when using the General Method, Finite Element Analysis may be used in 
determining αcr,op and αult,k in the verification of the resistance to lateral torsional buckling. 
However, the method will have simplifications and may not cover the real behavior of the 
members. 

ii) Choosing an adequate buckling curve 

The choice to which buckling curve to use depends upon the geometry of the cross section. The 
appropriate buckling curve (imperfection factor α) is determined from Table 6.2 of Eurocode 
3. For a tapered member varying cross-section, there can be various buckling curves. Buckling 
curve d or c as shown in Table 1-0 is directed to be used for non-uniform member in EC3, is 
adopted in the design, however, this may over predict the resistance level, as the buckling 
curve is different from that for the uniform members, and result in an over-conservative design. 
This means that the beam may be designed to resist much greater moment, than needed. In this 
design; the production of the beam would consume more materials than required which lead to 
a unsustainable use of materials. Furthermore, a specific buckling curve is applied to individual 
buckling cases in EC3 [1]. When the General Method is applied, choosing a buckling curve for 
tapered member can be a problem as height and width (h/b) varies along the section. 
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Table 1-0 present possible buckling curve for web-tapered beams: 

Clause Hot rolled Welded 
6.3.1 h/b ≤ 1.2 = Curve c Curve c 

6.3.2.2  
(general case LTB) 

h/b ≤ 2    = Curve a h/b ≤ 2 = Curve c 
h/b > 2    = Curve b h/b > 2    = Curve d 

  
where λLT, =0.4 and 
β = 0.75 

6.3.2.3  
(special case LTB) 

h/b ≤ 2    = Curve b h/b ≤ 2 = Curve c 
h/b > 2    = Curve c h/b > 2    = Curve d 

  
where, =0.4 and  
β = 0.75 

 

 

 

 

 

 

 

 

 

Figure 1-1 shows, how the ratio h/b will be different across the section length, when 
considering a tapered section. The buckling curve with the highest imperfection factor α is 
chosen. This, therefore, leads to an inefficient design. 

 

 

 

 

Figure 1-1: Tapered beam 
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1.2: Objectives 

In respect to the importance of this project, tapered steel members are advantageous and 
commonly used over prismatic members. The crucial advantage of the tapered steel members 
is the structural material’s economization due to its utilization of structural material as 
optimizing the cross section can save material. With the limitation given above, the EC3 safety 
verification for tapered beam may lead to an over prediction of the material required for the 
member. 

In this dissertation, tapered beam with varying linear web is studied and a proposed formula for 
lateral torsional buckling verification of web-tapered beam is given. The main objectives of the 
project are as follows: 

⋅ Applying and reviewing the existing method in EC3 for the buckling of uniform and 
non-uniform members 

⋅ Validating of General Method (clause 6.3.4) for stability checking of tapered member. 
⋅ Creating finite element models for tapered member and developing a reduction curve 

 
 

1.3: The use of tapered members 

Tapered members are commonly used in the steel construction industry, including continuous 
frame construction, typical products of which are single-level warehouses, exhibition centres 
and such. In addition to their structural efficiency, tapered members can be used to meet 
architectural requirements, making the structure to become more attractive. 
 
Figures 1-3 to 1-5 illustrate the use of tapered section in bridges, while Figure 1-6 to 1-8 show 
the application of tapered section in building. Lastly, Figure 1-9 shows an example of the use 
of a tapered column. 
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Application in bridges: 

	
  

	
  

	
   	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
   	
  

Figure 1-3: Three Bridges over Hoofdvaart, Amsterdam, 2004; Tapered beam along 
the bridge length 

Figure 1-4: La Devesa Bridge, Ripoll, Spain, 1991; Tapered arms that serve to 
transmit load from deck to arch 

Figure 1-5: The Alamillo Bridge, Seville, Spain, 1992 
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Figure 1-6: Fayetteville Festival Park, North Carolina, USA, 2004; the canopy was 
fabricated from tapered wide flanged steel sections 

 
Application in buildings: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1-7: Noor-e-Mobin Sports Hall, Semnan, Iran, 2010; typical tapered steel 
member frame structure 

Figure 1-8: 440 House, Palo Alto, California, USA, 2000; Tapered beam 
application in a modern resident 
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Application of tapered steel columns: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.4: Outline of this dissertation 
 
Chapter 1: Introduction and justification of the importance of the project and objectives 
Investigate the most influential parameters and understand the Eurocode background. 
 
Chapter 2: Literature review 
Review of the existing studies in the field of tapered sections is presented. The analytical 
background for uniform members is given and used as the benchmark or starting point for 
tapered member case to be developed. The General Method is adopted and applied to both 
uniform and non-uniform member, wherefore, the result can be analysed. This chapter also 
includes the assessment of journal articles, books and webpages 
 
Chapter 3: Main description of the work done 
 
Chapter 4: Results and discussion for lateral-torsional buckling of uniform beam 
Analytical model is developed and verified. Mcr is analysed.  
 
Chapter 5: Results and discussion for lateral-torsional buckling of tapered beam 
 
Chapter 7: Conclusions 

Figure 1-9: Forum at the Eckenberg Academy, Adelsheim, Germany 2013; tapered steel 
columns integral to the curtain wall façade transfer the remainder of the roof loads 
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Chapter 2 
 
2.0: LITERATURE REVIEW 

 

2.1: Structural analysis 

In the design procedure, the internal (member) forces and moments within the structure need to 
be determined from a global analysis before checking the strength of cross-sections and the 
stability of members. For a non-uniform member, computer analysis is necessary. Figure 2-0 
shows a graph developed from the different methods of global analysis and elastic buckling 
load is also illustrated. 

 

 

 

 

 

 

  

  
 

There are four types of global analysis given in Table 2-0 (below), 
 

     Take to account of 

First order 
analysis 

Elastic  initial geometry and fully linear 
material behavior 

Plastic initial geometry and non-linear 
material behavior 

Second order 
analysis 

Elastic deformed geometry and fully linear 
material behavior 

Plastic deformed geometry and non-linear 
material behavior 

Figure 2-0: Load-deformation for type of analysis 
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In addition, there have been many studies involving the elastic behavior and plastic stability 
issues of tapered sections; these included experimental, analytical and numerical approaches. 
The types of analysis procedures shown in Figure 2-0 and Table 2-0 are described and 
illustrated in Section 2.3. 

 

2.2: Tapered section 

The variation of the h/b of the cross-section in a tapered section relatively to a uniform section 
leads to a differences in the stress determination (when analyse with Euler-Bernoulli theory for 
uniform section). When there is an increase in the angle of taper of the beam α, there are 
additional normal stresses and shear stresses. Stresses are developed perpendicularly to the 
inclination of the flange (as shown by the dotted in Figure 2-1). These stresses can be 
determined by the analytical solutions developed by Timoshenko and Goodier, 1970 [4]. The 
direction and equilibrium of forces in a tapered section is shown with a black arrow on Figure 
2-1. 

 

   

 

 

 

 

Furthermore, when α is relatively small (α < 15°), the stress difference between the tapered 
section and the uniform section is negligible, hence, the formulae for uniform member can be 
used to design a tapered member (Galambos, 1988). 

Butler and Anderson (1963) have conducted experiments on elastic stability of web and flange 
tapered beams. These included an investigation of bracing requirements. Prawel et al1. (1974) 
[5] analysed members with inelastic stability, where the measured residual stresses of tapered 
sections showed stress distribution, similar to that of the residual stresses of uniform sections 
with welded cross sections. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  et al. is used as an abbreviation of ‘et alii’ meaning and others	
  

Figure 2-1: Forces in a tapered section 
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2.3: Stability verification procedures for tapered sections 

 
2.3.1: Stability verification procedure for a tapered column 
 
The expressions concerning the stability of tapered columns are mostly applied to tapered 
beam aswell, where formulae for calculation of elastic critical forces are used. Hirt and Crisinel 
(2001) [6], which they determined an expression for finding the equivalent inertia of I-cross 
section tapered columns Ieq . Lee (1972) [7] presented an expression for modification factor g 
of the tapered member’s length. The critical load’s calculation is based on the smallest cross 
section. Petersen (1980) [8] developed design charts for the extraction of a factor β to be 
applied to the critical load of a column with the same length and the smallest cross section are 
available for different boundary conditions and cross section shapes. In addition, Baptista and 
Muzeau (1998) [9] provide a stability verification of tapered columns, where the coefficient K 
is applied to the reduction factor of a column with the smallest cross section.  
 
AISC (2010) [10] present an equivalent uniform section, which has the same critical load and 
first order resistance and can be verified considering using EC3. 
 
 
2.3.2: Stability verification procedure for a tapered beam 
 
Kitipornchai and Trahair (1972) [11] present an analytical solution for the elastic critical 
moment Mcr for the tapered beams for any type of tapered I-beam loading. Galéa (1986) 
provides expressions for elastic critical moment, which was given by the elastic critical load of 
a web-tapered beam subject to a uniform bending moment distribution.  
In addition, in Ibañez and Serna (2010) [12], Mcr is given based on the C1 factors presented. 
In this approach (known as the ‘Equivalent Moment Approach’, an equivalent uniform beam 
replaces the tapered beam by modifying the bending moment diagram. Where the tapered 
beam subjected to M(x) is replaced by a uniform beam with the smallest cross section, the new 
moment M*(x) acting at each cross section of this equivalent beam is given by considering the 
critical moment which would be obtained at each cross section of the tapered beam Mcr(x), 
where: 
 

M*(x) = M(x)  ·
Mcr,0

Mcr(x)
 

 
Mcr,0 is the critical moment obtained by the smallest cross section. This means that tan 
equivalent uniform beam with a distribution of moments given by M*(x) is obtained. With an 
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(2.0) 

adequate C1 factor for this moment distribution and using the formula for uniform beams in 
EC3, The critical moment of the tapered beam can be determined. 
Andrade et al. (2005) [13], presents an expression for the calculation of Mcr based on the 
Rayleigh-Ritz method. C1 factor is calibrated for the case of tapered beams with fork 
conditions and subjects to the end moments. Moreover, an expression for Mcr of tapered beams 
subjects to concentrated load is also given in Andrade et al. (2007). Horne et al. (1979) [14] 
present expressions for the calculation of Mcr for tapered section with partial bracing near the 
tension flange. 

Boissonnade (2002) and Andrade et al (2007) [15] refer to the inadequacy of using finite 
stepped uniform beam elements to analyse of tapered member stability (not taken into account 
of the inclination of the flange). As a result, adequate elements to account for the torsional 
behavior of tapered members are developed. 

For plastic analysis (geometric non-linearity is taken into account), the following research is as 
follows. In AISC (2010), the mapping of the elastic buckling strength of tapered members to 
the design strength of an equivalent uniform section is performed (uniform beam with first 
order resistance and Mcr is determined and then EC3 is applied to the beam). Bradford (1988) 
provides a finite element for the elastic buckling resistance of the tapered double symmetric I-
beams, under the action of end moments or uniformly distributed load.  
In Vandermeulen (2007), solutions for a ‘‘plateau’’ slenderness λ0 or the limit slenderness (for 
which instability effects will influence the resistance of the beam) is given. The adequate 
imperfection factors α are also given for analysed cases with linear bending moment 
distributions. With λ0 and α being calibrated for a range of tapering and loading situations, EC3 
can be applied to provide adequate design. 

More importantly, a suitable moment of inertia for tapered members is provided by Hirt and 
Crisinel (2001). Here, the moment of inertia for tapered member, Ieq, depending on the type of 
web variation is given by: 

 

𝐼!,!" = 𝐶𝐼!,!"# 

Where,  

C = 0.08 + 0.92r 

𝑟 =    𝐼!,!"#/𝐼!,!"# 
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2.3.3: Stability verification procedure for a tapered beam-column 
 
The stability verification is performed on the basis of the interaction formula for uniform 
section with the provisions for the tapered beams and columns. For beam-column, General 
Method can be used with the generalized slenderness applied in the Ayrton-Perry equation. 
Thus, the most restrictive buckling curve for lateral-torsional buckling in Clause 6.3.1 or 
Clause 6.3.2 is adopted. Moreover, in the process of performing cross-sectional checks, a 
second order elastic analysis (see Table 2-0), where local second order effects and 
imperfections are considered. This is because there are no satisfactory section stability 
verification procedures for non-uniform members, thus, providing an over safe results. Using 
the General Method and consideration of certain buckling curves which are assumed to be 
adequate can even lead to an unsafe results due to the complexity of the imperfections. 
Therefore, all second order effects need to be accounted for in the structural analysis such that 
only cross section checks need to be performed. 
 
 
 
2.4: Application of EC3 methodologies for uniform sections 
 
 
 
2.4.1: Uniform members in bending (clause 6.3.2) 
 
Flexural member such as beams are the most common type of structural member. Essentially, 
beams are intended to span across two supports and transmit the loads mainly by bending 
action. 
 
Lateral-torsional buckling verification of beams is performed according to clause 6.3.2. 
Buckling resistance is determined by using the buckling curve (Figure 2-2) for flexural 
buckling. The non-dimensional slenderness for beams is denoted by λLT, this is to characterize 
lateral-torsional buckling. On one hand, beams with low value of λLT will failure by material 
yielding or in-plane failure2. On the other hand, beams with high value of λLT will failure by 
lateral-torsional buckling.  
 
As well as lateral-torsional buckling, there are other common checks that should be carried out 
to verify the suitability of a beam to support the applied loading; these include bending 
moment resistance, shear resistance and deflections. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  excessive bending and deformation in the plane of the applied loading	
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For laterally unrestrained beams, lateral-torsional buckling must be checked and designed for 
according to EC3. EC3 provides design methods that cover the areas that can influence lateral-
torsional buckling. These include section shape, beam geometry, the degree of lateral restraint, 
support conditions, type of loading, the residual stress pattern and initial imperfections. As well 
as checking in-plane bending, EC3 presents two approaches for the design check of lateral-
torsional buckling effect of I-beams. 
 
The first check given in Clause 6.3.2 involves buckling resistance, where the in-plane bending 
of beams is checked. 
 
The design buckling resistance of a laterally unrestrained beam is given by EC3: 
 

Mb,Rd  =   χLT

Wyfy

γm0
                                                     (2.1) 

 
Where,  

My,Rd  =   
Wyfy

γm0
                                                        (2.2) 

 
Thus, substituting equation (2.2) to Mb,Rd gives: 
 

Mb,Rd  =   χLT  My,Rd                                                 (2.3) 

 
The design buckling resistance Mb,Rd moment is equal to reduction factor for lateral-torsional 
buckling χLT  times design bending moment resistance in y-y axis My,Rd.  My,Rd  can be 

determined by considering an adequate section properties according to the respective cross-
section class. In equation (2.1): 
 

⋅ Wy = Wpl   for Class 1 or 2 cross-sections 

⋅ Wy = Wel   for Class 3 cross-sections 

⋅ Wy = Weff   for Class 4 cross-sections 
 
Moreover, when designing to EC3 for lateral-torsional buckling, lateral-torsional buckling 
curves for uniform members are identify by equation (2.4). This can be applied to all section 
types. 
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The reduction factor for lateral-torsional buckling can also be given by: 

χLT  = 
1

ΦLT + ΦLT
2 -  λLT

2
                                          (2.4) 

Where,  

ΦLT= 0.5[1+αLT( λLT – 0.2)+ λLT
2]                                    (2.5)  

 
 

In equation (2.4), α is an imperfection factor calibrated both by extensive numerical and 
experimental parametric tests (Beer and Schulz, 1970 [16]). This was adopted in EC3 in the 
Ayrton-Perry format. The values for α and the corresponding buckling curves are shown in 
Figure 2-2 and Table 2-1. This is also known as the reduction curve. 
 

 

 

  

 

 

 

 

 

 

 

Table 2-1: Imperfection factors α for buckling curves (Table 6.1 of EC3-1-1) 
 

Buckling curve a0 a b c d 

Imperfection factor α 0.13 0.21 0.34 0.49 0.76 

 

Figure 2-2: Buckling curve (L.S. Marques (2012)) 
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Table 2-2: Selection of buckling curve for different cross-section types (Table 6.5 of EC3-1-1)  
 

Fabrication 
procedure h/b limits Buckling about 

axis Buckling curve 

Rolled I-
sections 

>1.2 y-y a 
z-z b 

≤1.2 y-y c 
z-z c 

Welded I-
sections - y-y b 

z-z c 
 

and, 

λLT  =   
Wyfy

Mcr
                                                            (2.6)   

Once the buckling curve is picked, Table 2.1 is used to determine the value of imperfection 
factor αLT (Table 2-1), thus, reduction factor χ can be calculated. The member lateral-torsional 

buckling resistance Mb,rd (equation (2.1)) can be checked (must be larger or equal to Med). If 
Mb,rd is less than Med, this means that the designed section is inadequate, therefore, another 
cross-section must be chosen for design. 

 

2.4.2: Elastic critical moment for lateral-torsional buckling Mcr 

As shown on the equation (2.6), the determination of non-dimensional lateral-torsional 
buckling slenderness λLT  first requires calculation of elastic critical moment for lateral-
torsional buckling Mcr. However, EC3 does not provide any guidance on how Mcr should be 
calculated, hence mentioning that it should be based on the gross cross sectional properties and 
take into account the loading conditions, the real moment distribution and the lateral restraints. 
Reasons for the omission of such formulations include the complexity of the subject and lack 
of consensus between the contributing nations; by many, it is regarded as ‘textbook material’. 

In this dissertation, the expression for Mcr is provided by the NCCI3 and ENV 1993-1-1 (1992) 
for lateral-torsional buckling (equation (2.7)). 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Non-Contradictory Complementary Information, Access Steel SN003a-EN-EU 2007, equation 3	
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Mcr,0  =   
π2EIz

Lcr
2  

Iw

Iz
+

Lcr
2GIT

π2EIz

0.5

                                                  (2.7) 

 
For uniform doubly-symmetric cross-sections which is loaded through the shear centre at the 
level of the centroidal axis. Mcr is given in the expression below (equation (2.8)) 

 

Mcr  =  C1 
π2EIz

Lcr
2  

Iw

Iz
+

Lcr
2GIT

π2EIz

0.5

                                      (2.8) 

 
Where, warping constant Iw in the above cases is: 

Iw  =   
ℎ!

2Iz

4                                                                                                                                                      

Torsional constant IT is given by: 

IT  =   
2𝑏!𝑡!3 + ℎ!𝑡!3

3  

 
Correction factor C1 is determined from Table 2-3 for end moment loading and Table 2-4 for 
transverse loading. C1 factor takes into account the effect of the bending moment diagram. C1 
factor can also be used to modify Mcr,0, for example Mcr = C1 Mcr,0 when a uniform moment is 
applied to the beam.. 

Furthermore, for end moment loading, the value of C1 may be approximated by equation (2.9) 

 

.C1= 1.88 - 1.40ψ + 0.5ψ2           C1≤2.70                                      (2.9) 
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Table 2-3: C1 values for end moment loading 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2-4: C1 values for transverse loading 
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In conclusion, for uniform member, once Mcr is found by using equation (2.7), non-dimension 
slenderness λLT can be calculated using equation (2.6). Thus, the buckling curve can be 
selected and the imperfection factor χLT is found. In results, Mb,Rd is calculated by equation 

(2.1). This is then checked if greater than Med. 

 

2.5: Application of EC3 methodologies for non-uniform sections (tapered 
member) 
 

For non-uniform member, once Mcr is found by FEA4, non-dimension slenderness λLT can be 
calculated by using equation (2.14). Therefore, by applying the General Method to non-
uniform beam, the selection for lateral-torsional buckling curve should be based on Table 2-5 
(Table 6.5 of EC3-1-1), where buckling curve c or d is chosen for welded I-section. Buckling 
curve c and d has an imperfection factor αLT of 0.49 and 0.76. 

 

Table 2-5: Selection of buckling curves for lateral-torsional buckling 

Fabrication procedure h/b General Case Special Case 

Rolled I-sections ≤2 
>2 

a 
b 

b 
c 

Welded I-sections ≤2 
>2 

c 
d 

c 
d 

Other cross-sections - d d 

 

In addition, Clause 6.3.2.3 provides an expression for non-uniform members. Which, lateral 
torsional buckling curves can be described as: 

χLT  = 
1

ΦLT + ΦLT
2 - β λLT

2
                                          (2.10) 
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  Finite Element Analysis 
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where, 

ΦLT= 0.5[1+αLT( λLT –λLT,0 )+ β  λLT
2]                                    (2.11) 

 

β  = 0.75 (Recommended value) 

λLT,0  =  0.4 and λLT is calculated with the obtained Mcr by equation (2.14) 

This means that, for a given non-uniform section,  λLT can be calculated. This is then used to 
obtain χLT.  

Once χLT is found Mb,Rd for non-uniform member can be calculated for designing purposes. 

 

2.5.1: Elastic critical moment for lateral-torsional buckling Mcr for tapered member 

Andrade et al. (2005) provided the following expression for the determination of the critical 
moment of web-tapered beams subject to a linear bending moment distribution: 

 

Mcr  =   C1 π
L

+ 1+ak2
w,h max+bak2

it,h max EIzIT,h max

0.5

          (2.12) 

 

where, 

γh=hmax/hmin 

a=1-1.021* 1-
1
γh

+0.2927* 1-
1
γh

2

 

b=  -0.3815* 1-
1
γh

 

IT,h max=
2b
3

tf
cosα

3
+

hmaxtw3

3
                                         

Iz=
1
6

b3tf cos3 α                                                       
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kw,h max=
π
L

EIw,h max

GIT,h max
 ,   with          Iw, h max= 

1
24

hmax
2  btf cos3 α 

kIt,h max=
hmaxtw3

3IT, h max
 

α is the taper angle 

 
C1 is given by: 

C1 =
1

c+d 1-ψ +f 1-ψ 2
 

which, 

ψ =My,Ed,hmin/My,Ed,hmax 

 
For -0.5< ψ <1: 

𝑐 = 1 

d= -1.2060+ 
0.2160
γh

+0.2275e
-3

2kw, h max-0.2090×
e

-3
2kw,h max

γh
 

f= 0.3973- 
0.1174
γh

  -  0.100e
-3

2kw, h max   -  0.1070×
e

-3
2kw,h max

γh
 

 
For -1< ψ <1/2: 

c= -1.4340+ 
0.3748
γh

-0.1828e
-3

2kw, h max-0.2770×
e

-3
2kw,h max

γh
 

d= -1.6930+ 
0.6487
γh

+0.5275e
-3

2kw, h max-0.5655×
e

-3
2kw,h max

γh
 

f= 0.5628- 
0.2373
γh

-0.2208e
-3

2kw, h max-0.2220×
e

-3
2kw,h max

γh
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Chapter 3 
 
3.0: Main description of the work done  
 
General Method, Special case (Clause 6.3.2.3) was applied to a modeled tapered section. A 
value of Mcr was obtained and a reduction curve is plotted. This was then compared with the 
reduction curve given in the Eurocode 3.  

3.1: Linear analysis of beam by FEM 

Commercial finite element package ABAQUS v6.13 was used to provide an analysis of the 
strength capacity of beams. By using equation (2.8), a value of Mcr for any individual beam can 
be found and compared with the value of Mcr given by the finite element analysis.  

When analysing the beam, the following aspects have been taken into account: 

- modeling of the structure or structural component, including boundary conditions and 
type of element 

- modeling of materials’ properties 
- unit used throughout the analysis (must be constant) 
- modeling of loads 
- choice of software  

2 types of element were used in modeling the uniform beam, these include shell elements and 
beam (wire) elements. Shell element is used for modeling tapered section. 

Linear analysis is performed, in analysis step (Figure 3-1); buckling analysis in linear 
perturbation procedure type is chosen. By using this type of analysis, the linear critical moment 
can be found. This is calculated by multiplying the value of the applied reference moment Mref 
by the obtained eigenvalue λ: 

 

Mcr  =     λ  Mref                                                                 (3.0) 
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According to the Abaqus manual, eigenvalue buckling analysis: 

• is generally used to estimate the critical (bifurcation) load of “stiff” structures; 
• is a linear perturbation procedure; 

When moment is applied instead of load, critical moment Mcr is given. 

3.2: Modeling 

The shell element model was modeled in a 3D modeling space using a deformable planar type. 
To ensure that the model characterises the beams real behavior, the boundary conditions, 
loading, materials used must be inputted correctly in the model. The unit was kept constant 
throughout the analysis (metre).  

Moreover, a reference point was created at the centroid of the beam (Figure 3-2). A constraint 
was then applied to the reference point, causing the reference point to acts as a node. Boundary 
conditions and loads can be applied to the reference point. This was to make sure that the load 
is acted upon the whole cross-section. 

 

 

 

 

 

 

Figure 3-1: Step used for linear buckling analysis 

Figure 3-2: Reference points (marked in red) 
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3.2.1: Material properties 

S355 steel grade was used, with yield stress of 355MPa. A modulus of elasticity E of 210GPa 
and a Poisson’s ratio of 0.3 were adopted. 

3.2.1: Support conditions 

The boundary conditions for a simply supported single span member with end fork conditions 
are implemented in the wire planar model (Section 3.3). Fixed support with free end was 
applied for shell models. For the shell element, the following restraints were imposed on the 
free end: vertical, transverse displacement and rotation about x-x axis at the free node. Cross-
sections at the node at the free-end are modeled to remain straight, however, allowing for 
warping. This means that the flanges can move independently from the web. 

3.3: Uniform beam 1 

3D models consist firstly of wire planar (beam) type element and followed by shell elements 
were used for uniform beam in bending. Figure 3-3 illustrates the cross-section of the beam 
HEA300. Four HEA300 beams with length equals to 2, 4, 8 and 12 metres have been modeled 
for the beam element. Where, beam element type BS31OS have been adopted. According to 
the ABAQUS User’s Manual, this is the ‘Timoshenko’ type beam. All models were analysed 
by meshing with the deviation factor equal to 0.1.  

 

 

 

 

 

 

 

 

The material properties and cross-section is given in Figure 3-3. The three-points (default) 
Simpson thickness integration rule has been adopted for each segment, making up the section. 
Beams are simply supported and subjected to uniform moment at both ends of the beam 
(Figure 3-4). 

bf =  300mm 
tf   =  14mm 
tw  =  8.5mm 
h  =  290mm 
 
E  = 210GPa 
G  = 81GPa 
fy   = 355MPa 

Figure 3-3: HEA300 cross-section 
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Mcr can be achieved by multiplying the value of applied reference load by obtained eigenvalue 
(Sabat 2009 [17]), as shown in equation (3.0). 
 
When the eigenvalue is obtained, Mcr for wire planar element can be calculated, this is 
compared with the theoretical critical moment calculated by equation (2.8). 

A shell element with HEA300 beam profile is created for further analysis of the critical 
moment. This is to ensure that the method of modeling shell element will give the correct value 
of Mcr when modeling with tapered section. 

 

3.4: Uniform beam 2 

Lastly, a uniform I-beam with cross-section h=200mm and b=100m (Figure 3-5) was modeled 
and analysed. The models have a fixed support at one end with the following restraint at the 
other end: vertical, transverse displacement and rotation about xx axis. This beam has a similar 
hl value to the web tapered-beam. This is to be compared with the Mcr value given by the 
tapered beam. 

 

 

 

 

 
 

 

Figure 3-4: Pin-ended beam (L.S. Marques (2012), 

bf =  100mm 
tf   =  10mm 
tw  =  6mm 
h  =  200mm 
 

Figure 3-5: Analysed I beam 

E  = 210GPa 
G  = 81GPa 
fy   = 355MPa 
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3.5: Web-tapered beam 

 
Shell element was used to create a typical tapered section. Tapered I-beam with a taper ratio γh 
= 2 is modeled. The cross-section at the maximum height hmax is similar to Figure 3-5 and at 
the minimum height hmin, hmin = 100mm. Figure 3-6 presents a diagram of the tapered beam 
which was modeled. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
The models was analysed by FEM with the approximate global mesh size of 0.025, 0.01, 
0.0075 and 0.0025. In mesh controls, quad element shape with structured technique was 
selected (Figure 3-7). 
 
 
 
 
 

hmax	
   hmin	
  

Figure 3-6: Tapered I-beam γh = 2 

Cross-section at 
maximum height 

bf =  100mm 
tf   =  10mm 
tw  =  6mm 
h  =  200mm 

Cross-section at 
minimum height 

bf =  100mm 
tf   =  10mm 
tw  =  6mm 
h  =  100mm 
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The average eigenvalue from the analysis was obtained. Mcr can be achieved by multiplying the 
value of applied reference load by the obtained eigenvalue as shown on equation (3.0) (Sabat 
2009).  
 
Once Mcr

5 is calculated, equation (2.0) was used to find Iy,eq. General Method Clause 6.3.2.3 
(Special Case) is tested. This was achieved by using equation (2.6) to find λLT and this can be 
substituted into equation (2.11), and resulting in χLT to be calculated. A graph of λLT vs χLT 

was plotted. This is known as the reduction curve. 
 
The value of Mcr was also compared with the theoretical value of Mcr for the Uniform beam 2.  
 
Buckling curve of 𝛾!= 2 (𝛾!= hmax /hmin) is plotted as a result, using Clause 6.3.2.3 (equation 
(2.10) and (2.11). This is then put in contrast with other buckling curves provided by the 
General Method (Special Case) in the Eurocode 3. 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  Wy is assumed to be the same as the uniform section	
  

Figure 3-7: Mesh Controls 
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Chapter 4 
 
4.1: Results - Uniform beam 
 
4.1.1: Wire type element model HEA300 
 
Table 4.1: Theoretical critical buckling moment: ENV 1993-1-1 (1992) (equation 2.7) vs Finite 
Element Analysis 
 
 

 

Beam HEA300  length 

Elastic Critical Moment Mcr (kNm) 

ENV 1993-1-1 (1992) FEA 

2m 4458.0 4610.4 

4m 1241.0 1287.4 

8m 413.2 422.9 

12m 241.3 244.9 

 
*Calculation in Appendix A-i) 
 
4.1.2: Shell type element HEA300 (Figure 3-3) – Uniform beam 1 
 
Table 4.2: Theoretical critical buckling moment: ENV 1993-1-1 (1992) (equation 2.7) vs Finite 
Element Analysis (Simply supported boundary conditions) 
 

 

Beam HEA300 length 

Elastic Critical Moment Mcr (kNm) 

ENV 1993-1-1 (1992) FEA 

2m 4458.0 4604.4 

 
*Calculation in Appendix A 
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4.1.3: Shell type element (Figure 3-5) – Uniform beam 2 
 
Table 4.3: Theoretical critical buckling moment: ENV 1993-1-1 (1992) (equation 2.7) vs Finite 
Element Analysis (Cantilever) 
 

 

Beam with cross-section 
shown in Figure 3-4  
length 

Elastic Critical Moment Mcr (kNm) 

ENV 1993-1-1 (1992) FEA 

2m 209.2 667.7 

6m 50.04 114.5 

12m 23.9 46.4 

 
*Calculation in Appendix A-ii) 
 

 
4.2: Discussion - Uniform beam 
 
Uniform beam 1: 

Table 4.1 shows that Finite Element Analysis provides an accurate result when compared to the 
hand calculations. FEA illustrates an error of 3.3%. This error occurs because when calculating 
the results for ENV 1993-1-1 (1992), the beam is assumed to have no residual stresses, initial 
imperfections and no material-nonlinearities. Moreover, structures in reality would not reach 
this magnitude of load due to its geometrical imperfection, residual stress and material 
properties. 

Uniform beam 2 

For Table 4.3, the FEA provides Mcr values which are up to three times higher than the ENV 
1993-1-1 (1992). Similar to Uniform beam 1, when calculating the results for ENV 1993-1-1, 
the beam is assumed to have no initial imperfections.  

Another FEA was made and evaluated, where beams are able to move freely (simply 
supported), with moment applied at both ends of the beam and a concentrated force at one end 
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(Figure 3-4).  The value given regarding to this analysis was 185.3 kNm for 2m beam and 40.7 
kNm for 6m beam.  

 

 

  

 

 

 

 

 
 
Figure 4-1 provides a finite element model before (Figure 4-1 (a)) and after the analysis 
(Figure 4-1 (b)). The FEM model shown above does not provide a behavior of lateral-torsional 
buckling, however, when the beam in a cantilever situation, lateral-torsional buckling can be 
observed. Thus, the results for simply-support condition were not considered. 

 

 

 

  

Figure 4-1: Model and deformation of Uniform beam 2 

(a) (b) 
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Figure 5-1: model of 2m tapered beam 

Figure 5-2: Analysed tapered beam 

(a) (b) 

Chapter 5 
 
5.1: Results – Tapered beam 
 
5.1.1: Tapered section with γh = 2 (Figure 3-6) 
 
Mcr taken from the average of the analysis with mesh size of 0.025, 0.01, 0.0075 and 0.0025 
Angle of tapered α = 1.43º 
An example of a web-tapered beam which was analysed is shown in Figure 5-1 
 
 

 
 
 
 
 
 
 
 
 
Figure 5-2 (a) and (b) illustrate an example of the deformation presented by the analysis (2m 
length web-tapered beam).  
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-2 (a) is a 3D view of the beam with deformation. Lateral-torsional buckling can be 
observed in the analysis. Figure 5-2 (b) present a top view of the beam. 
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Table 5-1: Critical buckling moment:  Finite Element Analysis 
 

 

Tapered beam 
 𝛾!= 2 

Elastic Critical Moment Mcr 

(kNm) - FEA 

2m 523.0 

3m 268.4 

4m 173.1 

6m 97.5 

8m 67.5 

12m 41.6 

16m 11.7 

 
*Calculation in Appendix B – i) 

 
Cross-section: Class 1 (Wy is given in Appendix F of the AISC Design Guide 25) 
Wy = 237 ×103 mm3 ,S355 grade 
 
Table 5-2: Mcr from Table 4.3 to calculate non-dimensional slenderness  λLT, value to determine 
the reduction factor   ΦLT and reduction factor χLT: *Calculation in Appendix B – ii) 

 
Tapered beam 𝛾!= 2 λLT ΦLT χLT 

2m 0.401 0.561 0.967 

3m 0.493 0.614 0.906 

4m 0.614 0.694 0.825 

6m 0.818 0.853 0.692 

8m 0.983 1.005 0.592 

12m 1.252 1.296 0.457 

16m 2.352 3.053 0.180 
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Graph 5-1: Reduction curve   λLT vs χLT for 𝛾! = 2 tapered section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph 5-2: Reduction curve b and c for Special Case vs Graph 5-1 
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5.2: Discussion – Tapered beam 
 
Table 5-1 presents Mcr of tapered members with taper ratio 𝛾! = 2. The Mcr for a 2m length 
beam has a value of 523kNm; this is 145kNm lower than the Mcr for uniform section. 
However, the percentage difference between the tapered beam and the uniform beam reduces 
as length increases. For a beam with 6m length, Mcr is 17kNm greater for the uniform section, 
and for a beam with 12m length, the variance is only 4.8kNm. This means that, with an 
increase in length, the tapered beam will have a more similar Mcr to the uniform section. 
 
Furthermore, a reduction curve (Graph 5-1) is plotted using equation (2.10) and (2.11). This is 
compared to the original graph given in the Eurocode 3 (Graph 5-2). The reduction curve for 
the tapered section is lower than the reduction curve provided by Eurocode 3. The area of both 
curves is calculated and the percentage difference is obtained. Graph 5-2 is estimated to be 
16% lower than the Special Case curve c. This means that the reduction factor χLT provided by 

the Eurocode 3 Clause 6.3.2.3 will gives Mb,Rd value which is higher than the value obtained 
by the tapered beam analysed. Thus, this means that, when calculating the reduction factor for 
the tapered beam, the reduction factor given from the calculation should be reduced by 16% 
(equation (5.1)). 
 

χLT,t= 0.84 χLT                                                        (5.1) 

 
In discussion, the average percentage difference between the two curves is taken for 
calculation. However, the graph shows a much lower value at non-dimensional slenderness   λLT 
of 0.6 to 0.11. The variation of the reduction factor for Graph 5-1 can be up to 0.24 lower than 
the Special Case curve c. This different is significant, as when designing to the Eurocode 3 
Clause 6.3.2.3, it will provides a Mb,Rd value which will be higher than needed. In addition, 
plastic section modulus is assumed to be taken at the maximum cross-section area. Hence, 
when calculating the non-dimensional slenderness, the actual plastic section modulus of a 
tapered section must be used. 
 
Moreover, to achieve a more reliable result, it is a basis to perform a second order non-linear 
analysis. This will take account of the second-order effects, material non-linearity, residual 
stresses and material’s imperfections.   
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Chapter 6 
 
6.0: CONCLUSIONS 
 

• Tapered beam with taper ratio of 𝛾! = 2 provides a lower reduction curve when 
compared to the reduction curve in Eurocode 3. This is shown in Graph 5-2. 

• When calculating the reduction factor for the tapered beam using Clause 6.3.2.3, the 
reduction factor χLT, should be multiply by a factor of 0.84 to obtain the actual 

reduction factor provided by the curve in Graph 5-1. 
• This reduction factor will provides a lower Mb,Rd and this will be used for designing 

purpose for a tapered beam. 
• Second order non-linear analysis needs to be performed to take into account of the 

effect of residual stresses, material-nonlinearities and any imperfections. 
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